
Cluster versus grid for large-volume hyperspectral image

preprocessing

Jason Brazilea, Michael E. Schaepmanb, Daniel Schläpfera,
Johannes W. Kaisera, Jens Niekea, and Klaus I. Ittena

a Remote Sensing Laboratories, Dept. of Geography, University of Zurich,
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

b Centre for Geo-Information, Geo-Information and Remote Sensing, Wageningen University,
Droevendaalsesteeg 3, 6708 PB Wageningen, Netherlands

ABSTRACT

The handling of satellite or airborne earth observation data for scientific applications minimally requires pre-processing to
convert raw digital numbers into scientific units. However depending on sensor characteristics and architecture, additional
work may be needed to achieve spatial and/or spectral uniformity. Standard higher level processing also typically involves
providing orthorectification and atmospheric correction. Fortunately some of the computational tasks required to perform
radiometric and geometric calibration can be decomposed into highly independent subtasks making this processing highly
parallelizable. Such “embarrassingly parallel” problems provide the luxury of being able to choose between cluster or
grid based solutions to perform these functions. Perhaps the most convenient solutions are grid-based, since most research
groups making these kinds of measurements are likely to have access to a LAN whose spare computing resources could
be non-obtrusively employed in a grid. However, since many higher level scientific applications of earth observation data
might be composed of more highly interdependent subtasks, the parallel computing resources allocated for these tasks
might also be made available for low level pre-processing as well. We look at two modules developed for our prototype
data calibration processor for APEX, an airborne imaging spectrometer, which have been implemented on both a cluster
and a grid leading us to be able to make observations and comparisons of the two approaches.

Keywords: hyperspectral, cluster, grid, MODTRAN, APEX

1. INTRODUCTION

The Airborne Prism EXperiment (APEX) is currently being built as a demonstrator and calibrator for potential future
European spaceborne imaging spectrometers.1 In addition to supplying well-calibrated imaging spectroscopy data for
use in earth observation applications, the APEX project also supports development of new processing algorithms and
techniques.

One desirable technique to investigate is the possibility of the distribution of large volume computation to multiple
compute nodes in a way that can be integrated into a standard product operational framework.

While processor speed and input/output capacity are growing at an impressive rate, processing algorithms are becom-
ing increasingly more computationally intensive. A historical view of processing times for a typical airborne imaging
spectrometer data acquisition is shown in Table 1. We believe the trend will continue in the diction of more complex
computation in standard product generation. Therefore, we start to look at particular pieces in a standard production chain
that can already easily themselves to a distributed computing solution.

Send correspondence to Jason.Brazile@geo.unizh.ch

Table 1. Downward trends in operating times vs. upward trends in processing complexity

Year Download/Archive Product Generation

19872 9 working days 60 working days

19923 5 working days 5-10 working days

19964 3-4 working days 5-7 working days

1998 2 working days

(a) Published AVIRIS “full flight tape” processing
times

Module Per Scene Per CPU

Parametric orthorectification 1-2 days

Atmospheric LUT generation 1-2 days

Feature based calibration 1-2 day

Spatial/Spectral uniformity 1 day

(b) Estimated time for selected APEX modules

2. PROCESSING MODULE CANDIDATES

A high level overview (up to level 2) of the data processing chain being developed for the APEX processing and archiving
facility is shown in Figure 1.

Raw data files are provided on tape (or alternatively transferred from the acquisition computer via gigabit ethernet)
and combined with data obtained from the calibration home base, a level 0 product is produced consisting primarily of
segregated image cube scenes and laboratory-based calibration parameters.

Minimally, these level 0 products are used by the APEX PAF to produce radiometrically calibrated (but not spa-
tially/spectrally uniform) level 1A at-sensor radiance. When spatially/spectrally uniform level 1 data is desired (at the
expense of resolution lost due to re-sampling), uniform level 1C data can also be produced.

An optional, work-in-progress processing path involves automatic detection of anomalies such as smile/frown5 and
keystone6 derived from the spectral measurements themselves rather than from laboratory calibration data. This requires
the generation of a large lookup table (LUT) used for analysis of Fraunhofer lines and atmospheric absorption features7 as
an additional high resolution data calibration source.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

Surface

Reflectance
Surface

maps
Smile/Frown

Level 2

at sensor

LUT

Lab

Sensor

Raw Data

Calibration
Parameters

Lab

Atmospheric
correction &

orthorectification

Atmospheric
correction &

orthorectification

Acq Meta

Image

1C

anomaly
mappings

other

1A

Scenes

Positional

2A

w/re−sampling
uniformity
complete

detection
keystone

smile/frown &

w/o re−sampling
calibration
radiometric

generation
table

2C

lookup

Level 0 Level 1

generation
parameter
calibration

flagging
& quality

Segregation

Per Frame

maps
positional

Non−uniform

Radiance

& Spatially
Spectrally

Uniform

Reflectance

Figure 1. Simplified overview of the APEX airborne pushbroom imaging spectrometer data processing chain and 2 specific modules
addressed in this work.

2.1. Atmospheric Lookup Table Generation

The use of a lookup table has long been used to ease the computational requirements of retrieving surface reflectance from
airborne and spaceborne hyperspectral data. Common dimensions of such a table consist of attributes such as wavelength,
pixel position, atmospheric water vapor content, aerosol optical depth, and terrain elevation.8 A parametric fit of table
entries can be used instead of running jobs on a per pixel basis and yet remain within respectable margins of error.

Since the work for generating this table is already done for level 2 atmospheric processing, it was determined that the
same work can be used to provide an alternative high resolution source of calibration data based on known atmospheric
features and Fraunhofer lines. One such use of this data is detection of spectral line curvature.5 A typical lookup table
generated for this use might involve generating entries that vary water vapor values over a range suitable for the given
scene. One such table as generated by the ISDAS9 image analysis system involves hundreds of calls to a radiative transfer
program such as MODTRAN. In operation, this stage of processing typically requires 2-3 working days and was therefore
chosen as a candidate for speedup via distributed computing.

2.2. Radiometric Processing

The current scheme for generating the APEX radiance data product involves radiometric data calibration as well as an
optional step for assuring spatial and spectral uniformity. Since APEX provides programmable spectral binning, an initial
step of un-binning must also be performed. This leads to the following processing sequence10:

• Undo binning

• Correct the readout smear effect of the VNIR detector

• Correct for dark current

• Invert pixel response to physical units

• Replace bad pixels

• Correct straylight and optionally, ghost images

• Optionally correct spectral and spatial non-uniformity

• Redo binning

The uniformity of pushbroom imaging spectrometers is affected by spectral and spatial misregistration within each
detector array as well as by coregistration between the VNIR and SWIR spectral range. Since the correction of this
non-uniformity involves interpolation/re-sampling, the resulting reduction in resolution suggests that correction may be
undesirable in certain situations. Therefore two possibilities for APEX level 1 products have been defined as shown in 1.

In the 1C product where full uniformity is desired, preliminary analysis shows that uniformity processing is another
suitable candidate for a distributed solution since the current code is decomposable into independent frame-by-frame
subtasks.

3. PARALLELIZABILITY ANALYSIS

When analyzing a problem for discovery of potential parallelizability, there are a few standard characteristics that can
measured which can give some idea of parallel computation potential. Two such characteristics are examined below.

36782 ktrace RET ktrace 0
36782 ktrace CALL execve(0xbfbffb0f,0xbfbffa18,0xbfbffa20)
36782 ktrace NAMI "../bin/modtran"
36782 modtran RET execve 0
...
36782 modtran CALL fstat(0x2,0xbfbff910)
36782 modtran RET fstat 0
36782 modtran CALL ioctl(0x2,TIOCGETA,0xbfbff8b4)
36782 modtran RET ioctl 0
36782 modtran CALL fstat(0,0xbfbff900)
36782 modtran RET fstat 0
36782 modtran CALL ioctl(0,TIOCGETA,0xbfbff8a4)
36782 modtran RET ioctl 0
36782 modtran CALL fstat(0x1,0xbfbff910)
36782 modtran RET fstat 0
36782 modtran CALL ioctl(0x1,TIOCGETA,0xbfbff8b4)
36782 modtran RET ioctl 0
36782 modtran CALL stat(0xbfbfd9d0,0xbfbfd920)
36782 modtran NAMI "modroot.in"
36782 modtran RET stat -1 errno 2 No such file or directory
36782 modtran CALL stat(0xbfbfd9d0,0xbfbfd920)
36782 modtran NAMI "MODROOT.IN"
36782 modtran RET stat -1 errno 2 No such file or directory
36782 modtran CALL stat(0xbfbfd980,0xbfbfd8d0)
36782 modtran NAMI "tape5"
36782 modtran RET stat 0
36782 modtran CALL access(0xbfbfd980,0)
36782 modtran NAMI "tape5"
36782 modtran RET access 0
36782 modtran CALL readlink(0x80e91b4,0xbfbfd8d0,0x3f)
...
36782 modtran CALL open(0xbfbfd980,0x2,0x1b6)
36782 modtran NAMI "tape5"
36782 modtran RET open 3
36782 modtran CALL fstat(0x3,0xbfbfd8e0)
36782 modtran RET fstat 0
36782 modtran CALL stat(0xbfbfd980,0xbfbfd8d0)
36782 modtran NAMI "tape5"
36782 modtran RET stat 0
36782 modtran CALL fstat(0x3,0xbfbfd8d0)

(a) Output of system call trace for modtran process

...
enum iosyscalls {_OPEN, _CLOSE, _FSTAT, _LSEEK,
_ACCESS, _STAT, _READ, _WRITE};
...
#define _LSEEKSIZE 5
...
int ops[] = {
_FSTAT,2,0x0, /* "stderr" */
_FSTAT,0,0x0, /* "stdin" */
_FSTAT,1,0x0, /* "stdout" */
_STAT,(int) "modroot.in",2,
_STAT,(int) "MODROOT.IN",2,
_STAT,(int) "tape5",0x0,
_ACCESS,(int) "tape5",0,0x0,
_OPEN,(int) "tape5",0x2,0666,0x4,
_FSTAT,4,0x0, /* "tape5" */
_STAT,(int) "tape5",0x0,
_FSTAT,4,0x0, /* "tape5" */
_LSEEK,4,0x0,0,0x0, /* "tape5" */
_OPEN,(int) "tape6",0x2,0666,2,
...
};
int main(void)
{

int i, size = sizeof(ops) / sizeof(int);
for(i=0; i<size;) {

switch (ops[i]) {
...

case _LSEEK:
if (lseek(ops[i+1], ops[i+2], ops[i+3]) < 0) {

fprintf(stderr, "error: lseek 0x%X %s\n",
ops[i+2], strerror(errno));

exit(1);
}
i += _LSEEKSIZE;
break;

...
}

}
}

(b) Generated C code for I/O trace playback

Figure 2. Determining what amount of a process’ total run time is due to I/O

3.1. Input/Output

One of the most useful program characteristic to analyze is a program’s runtime I/O profile. If a program spends the
majority of its time reading and/or writing files then there is no benefit to splitting computation among multiple processors.

If I/O is found to be the bottleneck, standard techniques can be used to attempt to improve it such as buffer sizing/ data
blocking, re-arranging calls such that access is mostly sequential, putting heavily used files on faster local media, etc.

Most modern operating systems provide the capability to trace system calls and produce a report as in Figure 2a. In
some cases, the system call tracing facility can even provide profiling estimates on the amount of time spent in system
calls. However, system call tracing allows the opportunity to measure I/O in a more direct way. It is possible to write a
small program that automatically converts the output of a system call trace into a trace playback system that makes exactly
the same calls with the same arguments in the same sequence. An example of such automatically generated C code used
for playback is shown in Figure 2b. By subtracting the time taken to run the I/O trace playback from the total runtime
of the unmodified program, it is possible to estimate an upper bound on the amount of potential speedup possible due to
distributed computation.

The I/O tracing example shown in Figure 2 was used to determine that for our typical runs of MODTRAN jobs, I/O
buffering could be easily improved, but is not necessary since only 5% of the program’s runtime is spent in I/O.

Once time spent in I/O is reduced as much as possible, then analysis of computation can be addressed.

cpu

cpu

firewall

cpu

cpu

PAF

cpu

cpu

cpu

cpu
ssh/scp

cpu

cpu

firewall
cpu

cpu
login

cpu

cpu

cpu

cpu

node

(a) Example cluster

cpu

cpucpu

cpu

firewall

firewall

http(s)
PAF

ht
tp

(s
)

http(s)

firewallfirewall

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu

cpu
cpu

cpu

cpu cpu

(b) Example grid

Figure 3. Cluster vs. Grid model of parallel processing

3.2. Subtask Granularity

Once it has been determined that the majority of a process’ runtime is spent on computation as opposed to I/O, it is then
necessary to determine the possibilities for task decomposition. It might be possible to avoid the large amount of effort
needed to analyze a programs’ data processing structure if a problem’s granularity is large enough.

For example in our case of running hundreds of MODTRAN jobs, it is clearly possible to view the problem at the high
level granularity of indivisible MODTRAN jobs (or even collections of multiple MODTRAN jobs). In contrast, for some
of the work performed for AVIRIS data processing,11 smaller granularity was desired and MODTRAN itself was modified
so that single instances could be run on a distributed cluster of up to 32 nodes.

4. CLUSTER

4.1. Overview

The cluster model of computing is a compromise between the more desirable view of a single global supercomputer and the
lesser desirable view of clearly individual machines requiring each interaction to be explicitly designed and programmed. It
arose from the need to work on large problems yet also to take advantage of the speed of computational advances occurring
in the less specialized commodity computer market.

The cluster architecture used on the Matterhorn cluster12 for our operational prototype is based on the ROCKS cluster
distribution software13 and is outlined in figure 3(a).

4.2. Development View

The standard programming model on most clusters is based on a Message Passing Interface (MPI) library. A single program
is written that is executed on all nodes simultaneously. When interaction between nodes is required, those nodes call
communications routines that cause synchronization barriers signaling all nodes to wait until every other node involved
in that communication is ready to proceed. The cluster is used most efficiently if fewer synchronizations needs to be
performed - in other words, if nodes can run their programs independently.

The communication architecture of a cluster can be setup such that high internode bandwidth is optimized, or low
internode latency is optimized, or subgroup communication is optimized. Each of these models is the most appropriate
for some set of computation tasks and perhaps less appropriate for others. Different hardware vendors provide optimized
versions of the MPI library that is the most suitable for their communications hardware.

In any case, a cluster is usually available “as is” and the end-user has only limited options on the way a subset of nodes
can be configured for a particular computation.

However, one major advantage is that due to the desire to make the most of an expensive shared resource, compilers
and programming libraries available on cluster based systems are typically high quality.

4.2.1. Lookup Table Generation

In our lookup table generation module, the program flow is roughly outlined in 4(a). Since subtasks are highly independent,
low internode communication latency is not needed, but high network bandwidth is helpful since 3MB of data is returned
in the generation of each lookup table entry.

Another advantage of highly independent subtasks is that the number of nodes operating together toward the end result
can be easily selected at runtime via a command line parameter. The difference between running a job on 8 nodes and
running on 508 is decided by a command line parameter.

Because the task is linearly scalable up to 1700 nodes, we would want to run on the largest number of nodes available.
However, the way the Matterhorn cluster’s queuing system is set up, fewer node jobs are more likely to run sooner than
several node jobs - even if the several node jobs would be able to run in a very short amount of time.

As shown in table 4(b), an 8-node job waited about 15 minutes in the queue in order to run a 20 minute job. The same
job submitted to run on 64 nodes has been waiting on the queue for 14 days so far, even though the job would probably run
in less than 5 minutes.

4.2.2. Radiometric Calibration

The distribution of computation for the APEX distributed radiometric level 1 processing module would be organized
similarly, where job level granularity is on a frame-by-frame basis. However, an operational problem is that the current
implementation is written in a high level data modeling language that requires a runtime license, of which none of which
are available on the cluster. Even if some were available, it would likely be fewer than the number of nodes available in the
cluster, leading to another scarce resource to be scheduled.

In some cases, some such modeling language environments have the ability to generate standalone binaries that run
without the need for a license manager, but are operationally crippled using such techniques as requiring a mouse click in
a splash screen even for non-graphical programs. Technical workarounds for such inconveniences are available (such as
automated GUI event playback software) but the use of these may be in violation of software licensing agreements.

Other workarounds for such problems involve using open source “clones” of such modeling languages which may be
compatible enough to run a particular application.

4.3. End-User View

An end-user performing an operational task expects a single centralized interface and reproducible processing times. The
first of these expectations can be handled with appropriate integration and automation, assuming the remote cluster is
accessible from the machine running the operational interface at least via ssh or HTTP.

MPI_Comm_size(... &size)
niter = n / size

n = atoi(argv[1])

MPI_Scatter(...)

MPI_Gather(...)

for(i=0; i<niter; i++) {
 if ((i * size) + rank < n) {
 ret = system(command)

}
 }
 MPI_File_write(...,tmp_results,...)

MPI_Init(...)

MPI_Finalize(...)

MPI_Comm_rank(..., &rank)

mpi_runjobs.c

(a) Cluster

job_done 0001 slave_host

httpd

get_job
jobid 0001 /path/to/jobs/0001

job_schedulerslave

(update statistics)

GET http://apexgrid?cmd=get

GET http://apexgrid/jobs/0001/tape5

GET http://apexgrid/jobs/0001/commands

(Run commands)

POST http://apexgrid?cmd=results&jobid=0001&nfiles=3
(stdout)
(stderr)
(tape7)

~jobs/0001/commands

~jobs/0001/index.html

~jobs/0001/tape5

(b) Grid

Figure 4. Cluster vs. Grid program flow

However, in typical cluster environments, reproducible processing times are usually difficult to achieve since clusters
are typically driven by a queuing system that attempts to use the system as efficiently as possible - which in practice means
it is not immediately available for running a job at the time it was received.

4.4. Summary

The running time (as opposed to elapsed real time) of a cluster-based job is usually among the best achievable. Clusters typ-
ically have up-to-date computing nodes, good I/O subsystems, higher bandwidth/lower latency communication subsystems
and better compilers and development libraries than are typically available otherwise.

If a job is relatively large and requires a lot of internode communication, running on a cluster might be the only feasible
possibility. However, because of the competition for a shared resource in high demand, consistent, dependable access to
the cluster cannot be relied upon.

5. GRID

5.1. Overview

For medium to large computing problems that don’t require a high level of low-latency communication, workstations are
powerful enough that the majority of them could be used simultaneously as personal workstations as well as employed in a
lose computing grid. It is clearly a trend that as workstations and network infrastructure grow increasingly less expensive,
more workstations will be available on a LAN than can be interactively used by personnel. The grid model of computation
intends to take advantage of these unused resources.

A high level view of the grid used in our operational prototype is shown in the figure 3(b). It was composed of machines
on a university departmental network, a medium-sized software development company, and a private home network.

5.2. Development View

There has been a great deal of recent interest in grid and peer-to-peer computing.14 Unlike cluster computing there is
no clear standard or even agreed upon standard model. Most research focuses on the generic case – conceivably a single
global grid, where possibly smaller virtual grids automatically construct themselves, work on particular problems, and then
disband making way for other problems.15 This generic case needs to deal with a great many issues including resource
discovery, network topology, data dissemination and collection, scheduling, security, error recovery, and accounting.16

Additionally there are a few user-driven grid frameworks that are gaining moment such as17 which is being used by
SETI@home and protein folding research groups, and the XGrid18 product developed by Apple.

However, until the field becomes mature enough that a unique and ubiquitous generic solution becomes obvious for a
majority of uses, there will continue to be many different possibilities for implementing grid based solutions based on the
capabilities and possibilities presented by each situation.19

5.3. APEX Grid Framework

We implemented our own grid infrastructure using three small (each 200 lines of code) components as shown in figure
4(b).

First, we wanted to be able to communicate through firewalls since we want to use resources available in more than
one institution. This results in typically only 2 choices of transport - either HTTP or ssh. We chose HTTP, since it is the
most ubiquitous. If higher security is needed, HTTPS support could be added with minimal effort.

Therefore, the main grid component is a web CGI-based program that can connect via socket to an internal host running
a job scheduler and feed these jobs to computation nodes via HTTP request on the client side.

Clients periodically poll the server for jobs, so it is a pull model of computation rather than a push model where servers
initiate jobs on the clients.

The client component is a small program that emulates a web browser. It makes an HTTP request to a web server
to request a job, fetches URLs corresponding to the input files, runs the computation, and then uses file upload via CGI
POST to send back the results. When the web server gets the results, it forwards them to the job scheduler which maintains
statistics.

 0

 20

 40

 60

 80

 100

 120

 140

of

 jo
bs

 e
xe

cu
te

d
pe

r
ho

st

 -700

 -600

 -500

 -400

 -300

 -200

 -100

 0

m
ea

n/
st

de
v

(s
ec

s)
se

rv
er

 p
oi

nt
 o

f v
ie

w

 0

 100

 200

 300

 400

 500

 600

xx
xx

x
xx

xx
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

xx
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

xx
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

x
xx

xx
xx

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

x
xx

xx
xx

x
xx

xx
x

xx
xx

x
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

x
xx

xx
xx

xx
xx

x
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

x
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
x

xx
xx

xx
xx

xx
x

xx
xx

x
xx

xx
xx

x
xx

xx
xx

m
ea

n/
st

de
v

(s
ec

s)
sl

av
e

po
in

t o
f v

ie
w

Figure 5. Statistics gathered on a 1700 job run on a grid of 82 heterogeneous nodes (host names elided)

The main reason for a separate job scheduler is to serialize access to the jobs. In addition to tracking statistics about
which job is currently running on which client, it serves as an in memory cache of running/waiting queues. The job
scheduler handles only single, short connections so no locking is needed. If a CGI request is not able to connect to the job
scheduler, the web server requests the slave to sleep and try again later.

From the job developer’s point of view, no specialized code is needed, but there are a small number of expectations of
a job. A job is run in a subdirectory, called from a shell script with the reserved name ”commands”. The standard output
and standard error from running these commands are written to files with the reserved names ”stdout” and ”stderr”.

5.3.1. Lookup Table Generation

In our lookup table generation module, a job maps directly to a single MODTRAN run. Since jobs are independent, no
intranode communication is needed and therefore jobs run on a compute node one after another asynchronous to jobs
running on other compute nodes (unlike in the cluster model). In a highly heterogeneous grid, this is vital. Since the fastest
compute node in grid can run 40 jobs during the time it takes for our slowest node to run 1, it is important to not require
the fast node to synchronize with slow nodes.

The runtime results of LUT generation on a grid of 82 nodes is shown in figure 5. The top third of the graph shows the
distribution of jobs among compute nodes. The graph makes it clear that a small percentage of node perform the largest
amount of work. As seen from table 4(c), adding more, slow compute nodes might not improve overall job time and could
even slow things down by causing more network contention.

There are other interesting features of this graph. The bottom third shows mean and standard deviation of run times as
measured on compute nodes, while the middle third of the graph shows the same information as measured on the server
side. This shows that with this type of job, there can be a heavy penalty for being on a remote machine as compared to
being on the local machine.

For this type of job, chances are that limitation to a few high performance nodes will give the most desirable results.

Table 2. Cluster vs. Grid Summary

user + Usually highest performance CPUs.
user + Also works with interdependent or low-

latency communication requirements.
coder + Usually highest performance compilers

and libraries available.
user - Large jobs may have unlimited waiting

times in queue.
user - Runtime flexibility can be limited (e.g.

license managers).
coder - Obtrusive application modification is

usually necessary.

(a) Cluster characteristics

user + No upper bound on number of CPUs.
user + No special privileges needed to run.

coder + Sometimes possible to run applications
unmodified.

user - Requires multiple copying of in-
put/output files causing longer run times
due to I/O.

user - Execution environment not as standard-
ized as with clusters

coder - Wide variation in client resources and
performance.

(b) Grid characteristics

5.3.2. Radiometric Calibration

Due to the runtime license limitation described above, our grid based distributed radiometric calibration model is feasible
but limited. The number of running nodes can never exceed the number of licenses available which is usually measured in
the 10s. During the day, licenses are needed for interactive workstation use, so nighttime operation is a further common
limitation for operational use.

It is often argued that data modeling languages should be used for prototyping and operational code should be reim-
plemented in a more performant (and less license limiting) environment. If no new development is expected, this can be a
good strategy. However, if any continuing development or maintenance is planned, it is usually best to keep the application
closest to the language understandable by the domain experts as possible.

5.4. End-User View

As previously mentioned, an end-user performing an operational task expects a single centralized interface and repro-
ducible processing times. Both of these are addressed with the APEX grid framework. Since an HTTP based transport
is used, the control system and the job scheduler can be easily run from different geographic locations. Since jobs are
not synchronous, large jobs can be run at the same time as small ones preventing job starvation commonly experienced in
cluster environments.

5.5. Summary

While not as performant as cluster based systems, a grid-based system will probably provide more consistent run times
and is theoretically more scalable, since adding more compute nodes only involves running the client on a new machine
connected to the Internet.

6. CONCLUSION

Two example hyperspectral processing modules have been implemented in two different distributed computing environ-
ments - in a homogeneous Beowulf-style cluster and an ad-hoc heterogeneous grid. Each environment has advantages and
disadvantages (summarized in table 2) but both are workable. Perhaps the most important result is that it does not require
much effort to develop prototypes investigating both possibilities.

With minimal effort, we were able to demonstrate speed up of operational processing of look up table generation from
about half a day to about half an hour (Table 3). Given the queuing system of the cluster that we had available, using 8 nodes
seemed to provide the best efficiency due to longer queue waiting times for larger sub-clusters, even though theoretically
522 nodes were available. Coincidentally, a relatively low number of grid nodes (12) seems also to have provided the best
efficiency due to relative speed of those nodes vs the much slower 70 remaining nodes used.

The remaining task of investigation include ensuring that distributed modules can be smoothly and robustly integrated
into a complete operational process.

Table 3. Sampling of run times for lookup table generation based on 1700 MODTRAN jobs

jobs time (s)
12 10
892 11
605 12
170 13
7 14
9 15
1 17
1 18
1 23
1 28

1700 05h 28m 41s

(a) Single (fast) CPU

CPUs time

8 26m 56s (runtime)
42m 18s (total time)

64 ? (runtime)
> 14 days (total time)

(b) 522 node cluster12

CPUs time

52 34m 30s

82 34m 59s

(c) APEX Grid

ACKNOWLEDGMENTS

This work was partially supported under ESA/ESTEC contracts 16298/02/NL/US and 15449/01/NL/Sfe. Fruitful cooper-
ation and discussion with Robert Neville and Karl Staenz of the Canadian Centre of Remote Sensing about feature based
calibration and look up table generation led to much of the motivation of this work. The support of the University of Zurich
and Netcetera AG is also gratefully acknowledged.

REFERENCES

1. J. Nieke, K. I. Itten, J. W. Kaiser, D. Schläpfer, J. Brazile, W. Debruyn, K. Meuleman, P. Kempeneers, A. Neukom,
H. Feusi, P. Adolph, R. Moser, T. Schilliger, M. van Quickelberghe, J. Alder, D. Mollet, L. D. Vos, P. Kohler,
M. Meng, J. Piesbergen, P. Strobl, M. E. Schaepman, J. Gavira, G. Ulbrich, and R. Meynart, “Status of the airborne
dispersive pushbroom imaging spectrometer APEX (Airborne Prism Experiment),” in SPIE Missions and Sensors,
W. Barnes and J. Butler, eds., 5542, 2004. To appear.

2. J. Reimer, J. Heyada, S. Carpenter, W. Deich, and M. Lee, “Airborne visible/infrared imaging spectrometer AVIRIS
ground data processing system,” in SPIE Imaging Spectroscopy II, 834, 1987.

3. E. Hansen, S. Larson, H. Novack, and R. Bennett, “AVIRIS ground data processing system,” in Third Annual JPL
Airborne Geoscience Workshop, 1, 1992.

4. M. Aronsson, “A review of the new AVIRIS data processing system,” in 1998 AVIRIS Workshop, 1998.
5. R. A. Neville, L. Sun, and K. Staenz, “Detection of spectral line curvature in imaging spectrometer data,” in SPIE

Algorithms and Technologies for Multispectral Hyperspectral and Ultrspectral Imagery IX, S. Shen and P. Lewis,
eds., 5093, pp. 144–154, 2003.

6. R. A. Neville, L. Sun, and K. Staenz, “Detection of keystone in imaging spectrometer data,” in SPIE Algorithms and
Technologies for Multispectral Hyperspectral and Ultrspectral Imagery X, S. Shen and P. Lewis, eds., 5425, 2004.

7. B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data
using a spectrum-matching technique,” Remote Sensing of Environment 90(4), pp. 424–433, 2003.

8. K. Staenz and D. J. Williams, “Retrieval of surface reflectance from hyperspectral data using a look-up table ap-
proach,” Can. J. of R. S. Vol. 23, No. 4, pp. pp 354–368, 1997.

9. K. Staenz, T. Szeredi, and J. Schwarz, “ISDAS - a system for processing/analyzing hyperspectral data,” Can. J. of R.
S. Vol. 24, No. 2, pp. pp 99–113, 1998.

10. D. Schläpfer, J. W. Kaiser, J. Nieke, J. Brazile, and K. I. Itten, “Modeling and correcting spatial non-uniformity of the
APEX pushbroom imaging spectrometer,” in 13th Annual JPL Airborne Earth Science Workshop, JPL Publications,
March 2004.

11. P. Wang, K. Y. Liu, T. Cwik, and R. Green, “MODTRAN on supercomputers and parallel computers,” Parallel
Computing 28, pp. 53–64, 2002.

12. “University of Zurich Matterhorn cluster,” http://www.matterhorn.unizh.ch , Visited Jan 2004.
13. “Rocks cluster distribution,” http://www.rockclusters.org , Visited July 2004.
14. D. P. Anderson, “Public computing: Reconnecting people to science,” in Conference on Shared Knowledge and the

Web, (Madrid, Spain), 2003.
15. I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” The International Journal of Super-

computer Applications and High Performance Computing 11, pp. 115–128, Summer 1997.
16. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the grid: An open grid services architecture for

distributed systems integration,” 2002.
17. D. P. Anderson, “The berkeley open infrastructure for network computing,” Visited July 2004.
18. “Xgrid,” http://www.apple.com/acg/xgrid , Visited July 2004.
19. J. Ledlie, J. Shneidman, M. Seltzer, and J. Huth, “Scooped, again,” Feb 2003.

